极限存在的数列一定是收敛数列,收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。有界的数列不一定收敛,最简单的例子xn=sin(n),或者xn=(-1)^n,它们都是有界数列,但n→∞时,xn的极限不存在,所以不收敛。
极限存在的数列一定是收敛数列,收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。有界的数列不一定收敛,最简单的例子xn=sin(n),或者xn=(-1)^n,它们都是有界数列,但n→∞时,xn的极限不存在,所以不收敛。
有界数列不一定收敛。例如,已知数列{(-1)^n}是有界的,但它却是发散的。换句话说,有界是数列收敛的必要条件而不是充分条件。又例如数列{b(n)},b(n)=(-1)^n,|b(n)|<=1{b(n)}有界,b(n)为摆动数列,但是不收敛。
数列{Xn}满足:对一切n有Xn≤M(其中M是与n无关的常数)称数列{Xn}上有界(有上界)并称M是他的一个上界。
极限存在的数列一定是收敛数列,收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。有界的数列不一定收敛,最简单的例子xn=sin(n),或者xn=(-1)^n,它们都是有界数列,但n→∞时,xn的极限不存在,所以不收敛。
喜欢一个人,恋上一座城
那个少年,我很抱歉
真爱,如空谷幽兰,如诗如画