趣闻趣事

导航
趣爱秀 >趣闻探索 > 趣闻趣事 > 分式 > 方程 >

分式方程无解是什么意思?

趣爱秀 2023-10-17 17:42:56 原文链接:网络

分式方程无解是什么意思?

分式方程无解是指无论取何值都不能满足分式方程等号两边相等,分式方程无解主要有两种情形:

1、原分式方程在等号两边同时乘最简公分母化简为等式方程后,等式方程无解;

2、在分式方程化为等式方程后,整式方程有解,但是这个解却让原来的分式方程分母为0,这个解就叫作分式方程的增根。

分式方程有解和无解?

分式方程在求解时必须先化为整式方程,

所以在此过程中 可能会出现一种解 它是整式方程的解,

但会使原分式方程 无意义 即分母为零 这种解就是增根,

有解, 无解, 有整数解 ,则与在整式方程中一样

无解其实是在实数范围内的 其实是有虚根。

分式方程无解有哪几种情况?

分式方程是初中数学必备的内容,也是中考的命题热点,在分式方程的学习中需要注意以下几方面的问题。

一、分式方程的认识

什么是分式方程呢?分母中含有未知数的方程叫做分式方程。

分式方程的概念比较简单,分母中是否含有未知数是判断分式方程的重要依据。判断分式方程时,不能对方程进行约分、通分变形。

在分式方程的判断中需要注意圆周率π是数值。不是字母,也就是说,分母中含有π的方程不一定是分式方程。

二、分式方程的解法

解分式方程的基本思路是将分式方程化为整式方程再解答,体现了转化的思路。

解分式方程一般包含以下基本步骤:

①观察分式方程的特征,注意看分母,能分解因式的先分解,然后去寻找最简公分数。

找最简公分母的方法:将每个分母分解因式,找出所有出现因式的最高次幂,它们的积为最简分母的因式。

②去分母,给分式方程中的每一项都乘最简公分母,再约分,把原方程转化为整式方程;

注意:去分母时要给每一项都乘以最简公分母,不含分母的项不要忘乘最简公分母。

③解这个整式方程,得到整式方程的解;

这一步一般需要运用到整式的乘法、合并同类项、解一元一次方程或一元二次方程等知识点,之前的基础不牢固的话,需要先去复习巩固。

④验根,将整式方程的解代入最简公分母,如果最简公分母的值不为0,那么整式方程的解是原分式方程的解;否则这个分式方程无解,x的值是这个分式方程的增根。

验根很容易被忽视,最终的解只是分式方程化为整式方程之后的解,不一定能满足分式方程的分母不为0这个条件,所以需要验根。


看一道例题:

观察这个分式方程,发现分母能分解因式,所以在寻找最简公分母之前,先分解因式:

最简公分母为(x-1)(x+1),

分式方程两边每一项都乘以最简公分母,注意不要忘记给常数项1也乘以最简公分母。

然后进行约分,结果如下:

熟练之后,以上两步可以合并。

化为整式方程之后,进行下一步的计算,

整式乘法、

移项

合并同类项:

最终结果为:


别忘了验根,可以将x的值代入分别代入原分式方程左右两边看是否相等;也可以将x的值代入最简公分母中,检验最简公分母是否为0。

在本题中,将x=1/2中,经检验,最简公分母不为0,所以x=1/2是远分式方程的解。


三、分式方程无解


在解分式方程的最后一步需要验根,把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根。

分式方程的增根需要满足两个条件:

▲①增根能使最简公分母等于0.

▲②增根是去分母后所得整式方程的根.


为什么会产生增根呢?

增根的产生是在解分式方程的第一步“去分母”时造成的.

根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程。

如果方程的两边都乘以的数是0,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根,即原分式方程无解。


看下面的这道题目:

验根,将x=-1代入最简公分母x(x+1)中,计算发现最简公分母为0,则x=-1是原分式方程的增根,原分式分析无解。


四、分式方程中的字母参数问题

先来看看分式方程中涉及字母参数的两种问题:


1、分式方程有增根,求字母参数的值。

根据增根的概念,增根是原分式方程化成的整式方程的解,即所化为的整式方程是有解的;这个解会让最简公分母为0.

观察原分式方程,可得最简公分母为x-2,分母中的(x-2)和(2-x)可以相互转化,

有增根,说明了最简公分母x-2=0,则可得x=2,求出了分式方程化为整式方程之后的解。

接下来,解原分式方程即可,注意将字母参数k先当成数字,

将x=2代入最后的式子中可得到关于k 的方程,解方程可得k=1.

也可以在去分母之后直接将x=2代入所化成的整式方程中,得到关于k的方程,解方程同样可得k=2.



2、分式方程有无解,求字母参数的值。

分式方程无解的两种情况:

▲①将分式方程通过去分母变为整式方程后,整式方程无解;

▲②整式方程求得的根使得原分式方程的最简公分母为0,即求得的根为增根。

在没有特殊说明的情况下,两种情况都要考虑,不可忽略任何一种情况。


将上面的例题稍微做一改变,如:
先来化简原分式方程,注意将字母参数k先当成数字,与上面一样,

到了这一步,需要注意分类来讨论无解的情况:

第一种情况:将原分式方程通过去分母变为整式方程后,整式方程无解;

在本题中,

第二种情况:整式方程求得的根使得原分式方程的最简公分母为0,即求得的根为增根。

在本题目中,

最终可得,当k=1或2时,原分式方程无解。



通过上面的两道例题可得,在字母参数问题中要注意题意,到底是是有增根还是无解,是两种不同的情况,无解包含着产生增根和化成的整式方程无解两种情况。


来练习一道题目:

相关文章