趣闻趣事

导航
趣爱秀 >趣闻探索 > 趣闻趣事 > 依据 > 和约 >

通分的依据是什么?(通分和约分的依据是什么?)

趣爱秀 2023-10-14 18:05:26 原文链接:网络

通分的依据是什么?

关于这个问题,通分的依据是分数的分母相同或能够相同化。通分可以使不同分数的分母相同,从而方便进行加减乘除等运算。通分的方法是将分数化为分子乘积的形式,然后将分母相同化,最终得到通分后的分数。

通分和约分的依据是什么?

类比分数的通分得到分式的通分:   把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.   注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。

  2.通分的依据:分式的基本性质.   3.通分的关键:确定几个分式的最简公分母.   通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.   根据分式通分和最简公分母的定义,将分式 , , 通分:   最简公分母为: ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下: 例1 通分:   (1) , , ;   分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。  解:∵ 最简公分母是12xy2,   小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数   解:∵最简公分母是10a2b2c2,   由学生归纳最简公分母的思路。  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。  例2通分:   设问:对于分母为多项式的分式通分如何找最简公分母?   前面讲的是单项式,对于多项式首先应该对多项式因式分解,确定各分母所含的因子然后再确定最简公分母。  解:∵ 最简公分母是2x(x+1)(x-1),      小结:当分母是多项式时,应先分解因式.      解:   将分母分解因式:x2-4=(x+2)(x-2).4-2x=-2(x-2).   ∴最简公分母为2(x+2)(x-2).      由学生归纳一般分式通分:   通分的关键是确定几个分式的最简公分母,其步骤如下:   1.将各个分式的分母分解因式;   2.取各分母系数的最小公倍数;   3.凡出现的字母或含有字母的因式为底的幂的因式都要取;   4.相同字母或含字母的因式的幂的因式取指数最大的;   5.将上述取得的式子都乘起来,就得到了最简公分母;   6. 原来各分式的分

通分和约分的依据是什么?

类比分数的通分得到分式的通分:   把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.   注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。

  2.通分的依据:分式的基本性质.   3.通分的关键:确定几个分式的最简公分母.   通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.   根据分式通分和最简公分母的定义,将分式 , , 通分:   最简公分母为: ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下: 例1 通分:   (1) , , ;   分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。  解:∵ 最简公分母是12xy2,   小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数   解:∵最简公分母是10a2b2c2,   由学生归纳最简公分母的思路。  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。  例2通分:   设问:对于分母为多项式的分式通分如何找最简公分母?   前面讲的是单项式,对于多项式首先应该对多项式因式分解,确定各分母所含的因子然后再确定最简公分母。  解:∵ 最简公分母是2x(x+1)(x-1),      小结:当分母是多项式时,应先分解因式.      解:   将分母分解因式:x2-4=(x+2)(x-2).4-2x=-2(x-2).   ∴最简公分母为2(x+2)(x-2).      由学生归纳一般分式通分:   通分的关键是确定几个分式的最简公分母,其步骤如下:   1.将各个分式的分母分解因式;   2.取各分母系数的最小公倍数;   3.凡出现的字母或含有字母的因式为底的幂的因式都要取;   4.相同字母或含字母的因式的幂的因式取指数最大的;   5.将上述取得的式子都乘起来,就得到了最简公分母;   6. 原来各分式的分

什么叫通分?通分的依据是什么?

一、通分是根据分数(式)的基本性质,把几个异分母分数(式)化成与原来分数(式)相等的同分母的分数(式)的过程,叫做通分。

通分和约分的依据都是分数(式)的基本性质:

二、分数(式)的分子、分母同乘以或除以一个不等于零的数(式),分数(式)的大小不变。分母不变,对方的分子分母交叉相乘。

通分的关键是确定几个分式的最简公分母,其步骤如下:

1.分别列出各分母的约数;

2.将各分母约数相乘,若有公约数只乘一次,所得结果即为各分母最小公倍数;

3.凡出现的字母或含有字母的因式为底的幂的因式都要取;

4.相同字母或含字母的因式的幂的因式取指数最大的;

5.将取得的式子都乘起来,就得到了最简公分母;

通分和约分的依据都是( )?

约分和通分的依据是分数的基本性质。

分数的基本性质是:分数的分子和分母同时乘以或除以一个相同的且不为零的数,分数的大小不变。

约分:约分是分式约分,把一个分数的分子、分母同时除以公因数,分数的值不变。

通分:根据分数(式)的基本性质,把几个异分母分数(式)化成与原来分数(式)相等的同分母的分数(式)的过程,叫做通分。

相关文章