三集合容斥公式:标准型: |A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。
非标准型:|A∪B∪C | = | A | + | B | + | C |
两集合容斥原理公式:A∪B∪C=A+B+C。先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。计数是一个重复加(或减)1的数学行为,通常用于算出对象有多少个或放置想要之数目个对象(对第一个对象从一算起且将剩下的对象和由二开始的自然数做一对一对应)。
设总数为m,三个集合为a,b,c。a之外为m-a,b之外为m-b,c之外为m-c,所有集合之外的和为m-a+m-b+m-c。
要最小值,那么m-a必须是最大值,m-a看做是不属于a的,同理m-b不属于b的,m-c看做是不属于c的。不重合的话 m-a+m-b+m-c 最大,值最小。
再用m减去上述和值得ABC=m-(m-a+m-b+m-c)=a+b+c-2m
计数的事物计算方法
如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
为了使重叠部分不被重复计算,需要先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
A∪B|=|A|+|B|-|A∩B|,|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|,S=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。

1、三集合容斥原理的本质和二集合容斥原理是一样的,只不过由于又多了一个集合,公式和图形描述都变得更加复杂。其中A和B是两个集合,|A|表示集合A中的元素个数。在理解容斥原理时,完全可以把元素的个数类比做图形的面积。

2、在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
喜欢一个人,恋上一座城
那个少年,我很抱歉
真爱,如空谷幽兰,如诗如画