y=sinx对称轴为x=kπ+ π/2 (k为整数),对称中心为(kπ,0)(k为整数)。
y=cosx对称轴为x=kπ(k为整数),对称中心为(kπ+ π/2,0)(k为整数)。
y=tanx对称中心为(kπ,0)(k为整数),无对称轴。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = kπ+ π/2 解出x即可求出对称轴,令ωx+Φ = kπ,解出的x就是对称中心的横坐标,纵坐标为0。
若函数是y=Asin(ωx+Φ)+ k的形式,那此处的纵坐标为k,余弦型,正切型函数类似。
y=sinx对称轴为x=kπ+ π/2 (k为整数),对称中心为(kπ,0)(k为整数)。
y=cosx对称轴为x=kπ(k为整数),对称中心为(kπ+ π/2,0)(k为整数)。
y=tanx对称中心为(kπ,0)(k为整数),无对称轴。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = kπ+ π/2 解出x即可求出对称轴,令ωx+Φ = kπ,解出的x就是对称中心的横坐标,纵坐标为0。
若函数是y=Asin(ωx+Φ)+ k的形式,那此处的纵坐标为k,余弦型,正切型函数类似。
y=sinx对称轴为x=k∏+∏/2(k为整数),对称中心为(k∏,0)(k为整数)。y=cosx对称轴为x=k∏(k为整数),对称中心为(k∏+∏/2,0)(k为整数)。y=tanx对称中心为(k∏,0)(k为整数),无对称轴。这是要记忆的。对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ=k∏+∏/2解出x即可求出对称轴,令ωx+Φ=k∏解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+k的形式,那此处的纵坐标为k)余弦型,正切型函数类似。
y=sinx对称轴为x=kπ+ π/2 (k为整数),对称中心为(kπ,0)(k为整数)。
y=cosx对称轴为x=kπ(k为整数),对称中心为(kπ+ π/2,0)(k为整数)。
y=tanx对称中心为(kπ,0)(k为整数),无对称轴。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = kπ+ π/2 解出x即可求出对称轴,令ωx+Φ = kπ,解出的x就是对称中心的横坐标,纵坐标为0。
若函数是y=Asin(ωx+Φ)+ k的形式,那此处的纵坐标为k,余弦型,正切型函数类似
初中三制的应该是在初三学习,四制的,应该在初四学习。对称轴一般在初二学习就接触。对于北师大版的课本三角函数应该在九下第一章。当然对于校本教材来说不同的地方开设的内容也不同,所以三角函数也可能根据自己的实际情况 决定在几年级开设。
喜欢一个人,恋上一座城
那个少年,我很抱歉
真爱,如空谷幽兰,如诗如画